
What is WebRTC?

Web Real-Time Communication - WebRTC

● A collection of well-established protocols for establishing and maintaining real-time, peer-to-peer
communication.

○ Protocols for establishing connection between peers
■ Interactive Connectivity Establishment (ICE)
■ Session Traversal Utilities for NAT (STUN)
■ Traversal Using Relays around NAT (TURN)

○ Protocol for describing media to transmit
■ Session Description Protocol (SDP)

○ Protocol for establishing a secure connection
■ Datagram Transport Layer Security (DTLS)

○ Transport Protocols
■ Stream Control Transport Protocol (SCTP)
■ Secure Real-Time Transport Protocol (SRTP)

● Primarily designed for Video Conferences, but has now extended to many different applications.
● WebRTC requires, but does not specify, a signaling channel.

WebRTC Signaling

Intentionally not part of the spec to allow flexibility.

● Handles sending and receiving core messages for establishing the WebRTC media connection.

● Does not transmit or receive any media.

● In Orchid, we use WebSockets for this task.

WebRTC High-level Process

● Peer #1 creates an offer SDP and sends it to Peer #2 using the signaling channel.

● Peer #2 receives the offer SDP, generates an answer SDP, and sends it to Peer #1 using the signaling

channel.

● Both peers generate information about their network configuration using the ICE protocol and

send this information over the signaling channel.

● This connection information is used to generate UDP connections that are tested to find paths that

work.

● Once a valid connection is found, the communication channel is secured and media flows via RTP

protocol.

Establishing Connection - NAT Refresher
● Translates your internal/local IP:Port to an external Internet-routable IP address.

● Typical pain-point for VoIP applications.

Interactive Connectivity Establishment (ICE)
A protocol for discovering a way for two peers to communicate. Addresses common
NAT-related connection issues.

Overview of Technique

1. Gather - Each peer generates Connection Candidates
○ Host candidates (eth0, eth1, tun0)
○ Server reflexive candidates (Candidates received from STUN server).
○ Relay candidate (Candidates received from TURN server).
○ Peer reflexive candidates (Candidates generated during the connection test process).

2. Exchange Connection Candidates
3. Generate connection pairs and sort by priority
4. Connectivity Checks

○ Iterate through the combinations of peer candidates to determine which ones can actually transmit media.
5. Conclude ICE

Session Traversal Utilities for NAT (STUN)
A tool for hosts to discover the presence of a NAT and discover their external connection information.

Basic Concept:

● A host communicates with a well-known server (STUN Server) outside the host’s NAT.

● The STUN Server reports back with the host’s external connection info.

● This forms a server reflexive WebRTC Candidate which can be given to a peer.

● Media information does not flow through the STUN server.

Client
192.168.103.16

NAT
Firewall

STUN Server
stun.ipconfigure.com

70.1.2.5:4000

Traversal Using Relays around NAT (TURN)
A tool for traversing media through difficult NATs using relays.

Basic Concept:

● A host communicates with a well-known server (TURN Server) outside the host’s NAT.

● The TURN Server provides it’s connection info to give to a peer and proxies the media.

● This forms a relay WebRTC Candidate which can be given to a peer.

● Media information flows through the TURN server.

● Can be resource heavy.

WebRTC Network Scenarios

WebRTC Network Scenarios

Orchid
192.168.103.17

Client
192.168.103.16

Websocket WebRTC Signaling: HTTP Port 80

Media: UDP Random Port

Direct Connection between client and Orchid Server
● Client communicates over an HTTP websocket to negotiate media

channel.
● Media directly flows on local network.

Example: https://orchid.ipconfigure.com

WebRTC Network Scenarios

Remote Connection - Both Orchid Server and Client behind NAT
● Signaling still happens with HTTP (port 80 is forwarded).
● STUN server is used to discover peer external IP addresses and ports.
● Media directly sent between Orchid and Client.

Orchid
192.168.100.205

Client
192.168.103.16

Websocket WebRTC Signaling: HTTP Port 80

Media: STUN Negotiated Ports

NAT
Firewall

https://orchid.demo.ipconfigure.com

STUN Server
stun.ipconfigure.com

NAT
Firewall

70.
1.2

.5:
400

0 152.2.1.3:999

70.1.2.5:4000 --- 152.2.1.3:999

Example: https://orchid123.ddns.net:8443

RTSP - Remote Orchid

Orchid
192.168.100.205

Client
192.168.103.16

RTSP Signaling: HTTP Port 554

Media Transport: Random UDP Ports

NAT
Firewall

https://orchid.demo.ipconfigure.
com

NAT
Firewall

70.1.2.5:4000 --- 152.2.1.3:999

Port Forwarding:
 - 80 TCP
 - 554 TCP
 - Large UDP Range RTP

WebRTC Network Scenarios

Remote Connection with Fusion
● Signaling now happens through Fusion Proxy (Fusion forwards port 80).
● Media still direct connects between Orchid and Client.
● No rule changes to the Orchid NAT are required.

Orchid
192.168.100.205

Client
192.168.103.16

Websocket WebRTC Signaling: HTTP Port 80

Media: STUN Negotiated Ports
NAT

Firewall

https://demo.ipconfigure.com

STUN Server
stun.ipconfigure.com

NAT
Firewall

70.
1.2

.5:
400

0 152.2.1.3:999

70.1.2.5:4000 --- 152.2.1.3:999

FusionNAT
Firewall

VPN

Example: https://mcdonalds.ipconfigure.com

WebRTC Network Scenarios

Semi-Local Connection with Fusion
● Signaling through Fusion Proxy.
● Media transports all on local network.
● Doesn’t need STUN server in this case.

Orchid
192.168.103.17

Client
192.168.103.16 Fusion

VPN

NAT
Firewall

NAT
Firewall

Websocket WebRTC Signaling: HTTP Port 80

https://demo.ipconfigure.com

Media

Example: https://demo.ipconfigure.com

Implementation

Backend

● Implemented using Gstreamer elements
○ libnice - nicesrc , nicesink -- Handles ICE negotiations
○ dtlssrtpdec , dtlssrtpenc - Handles DTLS interactions and SRTP transport.
○ rtpbin - Handles RTP payload/depayload

● Created before Gstreamer released their official webrtcbin element.
● The difficult work is performed within the Gstreamer elements. Orchid code glues all of the

components together.
● Playback and Live streams use most of the same code paths as our RTSP server.

Frontend

● Provided by browsers natively in the Web API - RTCPeerConnection

